Consider SQL when writing your next processing pipeline | Dataform

Consider SQL when writing your next processing pipeline

Today, most non-trivial data processing is done using some pipelining technology, with user code typically written in languages such as Java, Python, or perhaps Go. The next time you write a pipeline, consider using plain SQL.

Data modeling
picture of author

Ben Birt on May 16, 2019

Once a team or organization has some data to manage - customer data, events to be fed into some machine learning system, or whatever else - they almost immediately find themselves writing, running, and maintaining processing pipelines.

Outputs of these pipelines are many and varied, including customer / market analysis, data cleaning, etc, but such pipelines seem to pop up more often and more quickly than one expects.

Today, most non-trivial data processing is done using some pipelining technology, for example Dataflow / Apache Beam, with user code typically written in languages such as Java, Python, or perhaps Go.

My experience

I worked as a software engineer at Google for several years, during which I led multiple teams and projects which required writing, managing, and maintaining various types of processing pipelines. During that time I became convinced that - for the majority of use-cases - expressing these pipelines in SQL is simpler, cheaper, and easier than the alternatives, with few disadvantages.

For what it’s worth, I’ll note that I’m actually a big fan of these pipelining technologies. While at Google, I was a cheerleader for the internal version of Cloud Dataflow (Flume) for both batch and streaming use-cases. However, I think that the reasons for using them - broadly - no longer apply to today’s world of highly scalable cloud warehouses and query engines.

Why isn’t SQL the de facto processing pipeline language today?

SQL wasn’t really a scalable option for processing data before we had widely available cloud data warehouses such as BigQuery and Redshift. Without these highly-scalable query engines, the only reasonable choice was to perform any significant data processing outside of the data warehouse.

Scalable processing

The first truly scalable data processing solution was probably something like Google MapReduce. It then quickly became obvious that chaining MapReduce-like processing steps into a full pipeline using some higher-level API can produce very powerful pipelining systems, and frameworks such as Hadoop, Apache Spark, and Google Cloud Dataflow were born. These systems enabled users to process terabytes of data (or more, with some tuning) quickly and scalably, which was often simply impossible using SQL query engines.

However, cloud data warehouse systems have evolved dramatically over the past 5 years. SQL queries running on BigQuery’s query engine will generally run much more quickly than the alternative, which requires reading all of the relevant data out of the warehouse, processing it, then writing the result back to some other table. It’s also much easier to run in production; there’s no need to manage temporary state, queries are optimized automatically, etc. All of these concerns are pushed to the query engine, and the user doesn’t have to care about them.

The query engine is the best place to optimize the pipeline since it has access to the most metadata about what data is being processed; as a result it’s much easier to manage the pipeline operationally in production. This is much better than the alternative - I can’t tell you how many hours (or days, or even weeks) my teams and I have spent debugging scalability issues and poor optimization choices in Java pipelines.

Existing bias towards imperative languages

I think there is an understandable cultural bias in software engineering teams towards using standard imperative programming languages to implement processing pipelines, and until very recently it wasn’t really possible to mix and match SQL and non-SQL (see below for more on this).

Engineers are much more familiar with configuring jobs written in these languages in production, but happily, modern SaaS options obviate this problem for SQL pipelines by taking responsibility for scheduling and running the user’s code, so that the user needs to do very little productionization at all.

Additionally, SQL scripts have sometimes been treated as a second class citizen versus other languages. Some tools used for SQL script development haven’t supported standard software engineering techniques such as version control or code review. However, this too has changed, with modern toolchain options supporting these practices as first-class features.

SQL has distinct advantages over the alternatives

SQL is a language built and designed to support exactly what you want to do when you’re processing data: joining, filtering, aggregating, and transforming data. Thus, it’s usually much simpler and easier to express your pipeline in SQL than it is in some other pipelining technology. (If you’d like to see an example of just how powerful SQL can be, take a look at this article in which a deep neural network is implemented with it!)

A common language

The biggest advantage of implementing your pipeline in SQL is that it’s likely to be the same language that you or your data team use to actually perform final analysis on the output of the pipeline.

This means that the data team don’t need support from engineers to make changes to the pipeline. Instead, they’re empowered to make the changes themselves.


When something goes wrong, SQL pipelines are usually much easier to introspect than the alternative. If you want to check exactly what data is being output by any given processing stage of a SQL pipeline, you can simply pull out those results into some relevant SELECT query.

Doing the same using a pipelining system can be a real pain, involving making significant code changes (just to add enough instrumentation to enable debugging) and re-deploying the pipeline.

Faster development

During development of a SQL-based pipeline, the iteration cycle is significantly faster. This is because the feedback loop is much quicker - make an edit to your query(s), re-run the pipeline, and immediately get new results.

If the pipeline processes so much data that it takes more than a minute or two to execute, it’s trivial to process a fraction of the data (to get results more quickly) by adding a LIMIT to your query (or subqueries), or by only selecting rows belonging to a subset of the input dataset.

When writing Java pipelines from scratch, I would often find that testing out a single bugfix would take hours - not so with SQL. I actually often found myself writing a SQL script to validate the output of some productionized Java pipeline, only to belatedly realize that I had essentially re-implemented the Java pipeline in SQL - in much fewer lines of code, with much more readability, and significantly less complexity.

SQL’s disadvantages

In my experience there are two distinct domains where other languages have an edge on pure SQL: (1) unit testing and (2) the readability of particularly complex data transformations.

Some SQL queries can be fairly complex, especially if they use powerful features such as BigQuery’s analytic functions. I’d like to be able to write unit tests for these SQL queries, statically defining sets of input rows and expected output rows, asserting that the query does exactly what it’s supposed to. We’re working on implementing this feature within Dataform, and expect to have basic unit test support out soon. However, a useful tool which can help out here is data assertions, using which you can express requirements of your input data, for example to check for correctness, before continuing to run your processing pipeline.

Occasionally, you will want to run some particularly complicated data transformation logic. (For one interesting - if slightly insane - example, check out this Medium post.) Sometimes, when expressed in SQL, this can become difficult to read and/or maintain due to its complexity. However, there exists a nice solution to this problem: User-Defined Functions (UDFs). UDFs allow you to break out of SQL and use JavaScript or Python (depending on the warehouse) when you need the power of a full imperative programming language to implement your own function.

The future

We’re seeing a general move towards expressing pipelines in plain SQL. Indeed, Apache Beam recently launched support for Beam SQL, allowing Java users to express transformations using inline SQL. I expect that as time goes on, we’ll see fewer and fewer processing pipelines expressed using Java/Python/Go, and much more work being done inside data warehouses using simple SQL, for all of the reasons discussed above.

More content from Dataform

Dataform is joining Google Cloud


Dataform is joining Google Cloud

Today we're excited to announce that we've joined Google Cloud. Over the course of the past several months, our partnership with Google Cloud has deepened and we believe that our new combined efforts can make our customers and partners even more successful.
Learn more
Using Javascript to Create an Acquisition Funnel Dataset illustration

Using Javascript to Create an Acquisition Funnel Dataset

How to use a combination of SQL and Javascript to create an acquisition funnel dataset.
Learn more
How to add a new warehouse adapter to Dataform illustration

How to add a new warehouse adapter to Dataform

I recently wrote a Presto adapter for Dataform during a week long quarterly hackathon. Here's a guide on how I'd do it again.
Learn more

Learn more about the Dataform data modeling platform

Dataform brings open source tooling, best practices, and software engineering inspired workflows to advanced data teams that are seeking to scale, enabling you to deliver reliable data to your entire organization.